
www.manaraa.com

TECHNICAL PAPERSubmitted to SIAM ReviewSOFTWARE LIBRARIES FOR LINEAR ALGEBRACOMPUTATIONS ON HIGH PERFORMANCE COMPUTERS1Jack J. Dongarra zxDavid W. Walker xz Department of Computer ScienceUniversity of Tennessee107 Ayres HallKnoxville, TN 37996-1301x Mathematical Sciences SectionOak Ridge National LaboratoryP. O. Box 2008, Bldg. 6012Oak Ridge, TN 37831-6367Corresponding author:David W. WalkerOak Ridge National LaboratoryP. O. Box 2008Oak Ridge, TN 37831-6367(615) 574-7401 (o�ce)(615) 574-0680 (fax)walker@msr.epm.ornl.gov (email)1This work was supported in part by ARPA under contract number DAAL03-91-C-0047 ad-ministered by ARO, and in part by DOE under contract number DE-AC05-84OR21400, and byNational Science Foundation Grant number ASC-ASC-9005933.i

www.manaraa.com

SOFTWARE LIBRARIES FOR LINEAR ALGEBRACOMPUTATIONS ON HIGH PERFORMANCE COMPUTERSJack J. DongarraDavid W. WalkerAbstractThis paper discusses the design of linear algebra libraries for high performance computers. Partic-ular emphasis is placed on the development of scalable algorithms for MIMD distributed memoryconcurrent computers. A brief description of the EISPACK, LINPACK, and LAPACK libraries isgiven, followed by an outline of ScaLAPACK, which is a distributed memory version of LAPACKcurrently under development. The importance of block-partitioned algorithms in reducing thefrequency of data movement between di�erent levels of hierarchical memory is stressed. The useof such algorithms helps reduce the message startup costs on distributed memory concurrentcomputers. Other key ideas in our approach are the use of distributed versions of the Level3 Basic Linear Algebra Subprograms (BLAS) as computational building blocks, and the use ofBasic Linear Algebra Communication Subprograms (BLACS) as communication building blocks.Together the distributed BLAS and the BLACS can be used to construct higher-level algorithms,and hide many details of the parallelism from the application developer.The block-cyclic data distribution is described, and adopted as a good way of distributing block-partitioned matrices. Block-partitioned versions of the Cholesky and LU factorizations are pre-sented, and optimization issues associated with the implementation of the LU factorization algo-rithm on distributed memory concurrent computers are discussed, together with its performanceon the Intel Delta system. Finally, approaches to the design of library interfaces are reviewed.Key words: Parallel computing, linear algebra software libraries, LAPACK, ScaLAPACKAMS subject classi�cations: 65Y05, 65Y10, 65F05
iii

www.manaraa.com

1 IntroductionThe increasing availability of advanced-architecture computers is having a very signi�cant e�ecton all spheres of scienti�c computation, including algorithm research and software developmentin numerical linear algebra. Linear algebra|in particular, the solution of linear systems ofequations|lies at the heart of most calculations in scienti�c computing. This chapter discussessome of the recent developments in linear algebra designed to exploit these advanced-architecturecomputers. Particular attention will be paid to dense factorization routines, such as the Choleskyand LU factorizations, and these will be used as examples to highlight the most important factorsthat must be considered in designing linear algebra software for advanced-architecture computers.We use these factorization routines for illustrative purposes not only because they are relativelysimple, but also because of their importance in several scienti�c and engineering applications thatmake use of boundary element methods. These applications include electromagnetic scatteringand computational uid dynamics problems, as discussed in more detail in Section 4.1.Much of the work in developing linear algebra software for advanced-architecture computers ismotivated by the need to solve large problems on the fastest computers available. In this chapter,we focus on four basic issues: (1) the motivation for the work; (2) the development of standardsfor use in linear algebra and the building blocks for a library; (3) aspects of algorithm designand parallel implementation; and (4) future directions for research.For the past 15 years or so, there has been a great deal of activity in the area of algorithms andsoftware for solving linear algebra problems. The linear algebra community has long recognizedthe need for help in developing algorithms into software libraries, and several years ago, as acommunity e�ort, put together a de facto standard for identifying basic operations required inlinear algebra algorithms and software. The hope was that the routines making up this stan-dard, known collectively as the Basic Linear Algebra Subprograms (BLAS), would be e�cientlyimplemented on advanced-architecture computers by many manufacturers, making it possible toreap the portability bene�ts of having them e�ciently implemented on a wide range of machines.This goal has been largely realized.The key insight of our approach to designing linear algebra algorithms for advanced architecturecomputers is that the frequency with which data are moved between di�erent levels of thememory hierarchy must be minimized in order to attain high performance. Thus, our mainalgorithmic approach for exploiting both vectorization and parallelism in our implementations isthe use of block-partitioned algorithms, particularly in conjunction with highly-tuned kernels forperforming matrix-vector and matrix-matrix operations (the Level 2 and 3 BLAS). In general,the use of block-partitioned algorithms requires data to be moved as blocks, rather than asvectors or scalars, so that although the total amount of data moved is unchanged, the latency(or startup cost) associated with the movement is greatly reduced because fewer messages areneeded to move the data. 1

www.manaraa.com

A second key idea is that the performance of an algorithm can be tuned by a user by varyingthe parameters that specify the data layout. On shared memory machines, this is controlled bythe block size, while on distributed memory machines it is controlled by the block size and thecon�guration of the logical process mesh, as described in more detail in Section 5.In Section 1, we �rst give an overview of some of the major software projects aimed at solvingdense linear algebra problems. Next, we describe the types of machine that bene�t most from theuse of block-partitioned algorithms, and discuss what is meant by high-quality, reusable softwarefor advanced-architecture computers. Section 2 discusses the role of the BLAS in portability andperformance on high-performance computers. We discuss the design of these building blocks,and their use in block-partitioned algorithms, in Section 3. Section 4 focuses on the design of ablock-partitioned algorithm for LU factorization, and Sections 5, 6, and 7 use this example toillustrate the most important factors in implementing dense linear algebra routines on MIMD,distributed memory, concurrent computers. Section 5 deals with the issue of mapping the dataonto the hierarchical memory of a concurrent computer. The layout of an application's data iscrucial in determining the performance and scalability of the parallel code. In Sections 6 and 7,details of the parallel implementation and optimization issues are discussed. Section 8 presentssome future directions for investigation.1.1 Dense Linear Algebra LibrariesOver the past twenty-�ve years, the �rst author has been directly involved in the development ofseveral important packages of dense linear algebra software: EISPACK, LINPACK, LAPACK,and the BLAS. In addition, both authors are currently involved in the development of ScaLA-PACK, a scalable version of LAPACK for distributed memory concurrent computers. In thissection, we give a brief review of these packages|their history, their advantages, and their limi-tations on high-performance computers.1.1.1 EISPACKEISPACK is a collection of Fortran subroutines that compute the eigenvalues and eigenvectorsof nine classes of matrices: complex general, complex Hermitian, real general, real symmetric,real symmetric banded, real symmetric tridiagonal, special real tridiagonal, generalized real, andgeneralized real symmetric matrices. In addition, two routines are included that use singularvalue decomposition to solve certain least-squares problems.EISPACK is primarily based on a collection of Algol procedures developed in the 1960s andcollected by J. H. Wilkinson and C. Reinsch in a volume entitled Linear Algebra in the Handbookfor Automatic Computation [57] series. This volume was not designed to cover every possiblemethod of solution; rather, algorithms were chosen on the basis of their generality, elegance,accuracy, speed, or economy of storage. 2

www.manaraa.com

Since the release of EISPACK in 1972, over ten thousand copies of the collection have beendistributed worldwide.1.1.2 LINPACKLINPACK is a collection of Fortran subroutines that analyze and solve linear equations andlinear least-squares problems. The package solves linear systems whose matrices are general,banded, symmetric inde�nite, symmetric positive de�nite, triangular, and tridiagonal square.In addition, the package computes the QR and singular value decompositions of rectangularmatrices and applies them to least-squares problems.LINPACK is organized around four matrix factorizations: LU factorization, pivoted Choleskyfactorization, QR factorization, and singular value decomposition. The term LU factorizationis used here in a very general sense to mean the factorization of a square matrix into a lowertriangular part and an upper triangular part, perhaps with pivoting. These factorizations willbe treated at greater length later, when the actual LINPACK subroutines are discussed. But�rst a digression on organization and factors inuencing LINPACK's e�ciency is necessary.LINPACK uses column-oriented algorithms to increase e�ciency by preserving locality of refer-ence. This means that if a program references an item in a particular block, the next reference islikely to be in the same block. By column orientation we mean that the LINPACK codes alwaysreference arrays down columns, not across rows. This works because Fortran stores arrays incolumn major order. Thus, as one proceeds down a column of an array, the memory referencesproceed sequentially in memory. On the other hand, as one proceeds across a row, the memoryreferences jump across memory, the length of the jump being proportional to the length of acolumn. The e�ects of column orientation are quite dramatic: on systems with virtual or cachememories, the LINPACK codes will signi�cantly outperform codes that are not column oriented.We note, however, that textbook examples of matrix algorithms are seldom column oriented.Another important factor inuencing the e�ciency of LINPACK is the use of the Level 1 BLAS;there are three e�ects.First, the overhead entailed in calling the BLAS reduces the e�ciency of the code. This reductionis negligible for large matrices, but it can be quite signi�cant for small matrices. The matrix sizeat which it becomes unimportant varies from system to system; for square matrices it is typicallybetween n = 25 and n = 100. If this seems like an unacceptably large overhead, rememberthat on many modern systems the solution of a system of order 25 or less is itself a negligiblecalculation. Nonetheless, it cannot be denied that a person whose programs depend critically onsolving small matrix problems in inner loops will be better o� with BLAS-less versions of theLINPACK codes. Fortunately, the BLAS can be removed from the smaller, more frequently usedprogram in a short editing session.Second, the BLAS improve the e�ciency of programs when they are run on nonoptimizing3

www.manaraa.com

compilers. This is because doubly subscripted array references in the inner loop of the algorithmare replaced by singly subscripted array references in the appropriate BLAS. The e�ect can beseen for matrices of quite small order, and for large orders the savings are quite signi�cant.Finally, improved e�ciency can be achieved by coding a set of BLAS [17] to take advantage ofthe special features of the computers on which LINPACK is being run. For most computers, thissimply means producing machine-language versions. However, the code can also take advantageof more exotic architectural features, such as vector operations.Further details about the BLAS are presented in Section 2.1.1.3 LAPACKLAPACK [14] provides routines for solving systems of simultaneous linear equations, least-squaressolutions of linear systems of equations, eigenvalue problems, and singular value problems. Theassociated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also pro-vided, as are related computations such as reordering of the Schur factorizations and estimatingcondition numbers. Dense and banded matrices are handled, but not general sparse matrices.In all areas, similar functionality is provided for real and complex matrices, in both single anddouble precision.The original goal of the LAPACK project was to make the widely used EISPACK and LIN-PACK libraries run e�ciently on shared-memory vector and parallel processors. On these ma-chines, LINPACK and EISPACK are ine�cient because their memory access patterns disregardthe multilayered memory hierarchies of the machines, thereby spending too much time movingdata instead of doing useful oating-point operations. LAPACK addresses this problem by re-organizing the algorithms to use block matrix operations, such as matrix multiplication, in theinnermost loops [3, 14]. These block operations can be optimized for each architecture to accountfor the memory hierarchy [2], and so provide a transportable way to achieve high e�ciency ondiverse modern machines. Here we use the term \transportable" instead of \portable" because,for fastest possible performance, LAPACK requires that highly optimized block matrix opera-tions be already implemented on each machine. In other words, the correctness of the code isportable, but high performance is not|if we limit ourselves to a single Fortran source code.LAPACK can be regarded as a successor to LINPACK and EISPACK. It has virtually all thecapabilities of these two packages and much more besides. LAPACK improves on LINPACK andEISPACK in four main respects: speed, accuracy, robustness and functionality. While LINPACKand EISPACK are based on the vector operation kernels of the Level 1 BLAS, LAPACK wasdesigned at the outset to exploit the Level 3 BLAS |a set of speci�cations for Fortran subpro-grams that do various types of matrix multiplication and the solution of triangular systems withmultiple right-hand sides. Because of the coarse granularity of the Level 3 BLAS operations,their use tends to promote high e�ciency on many high-performance computers, particularly if4

www.manaraa.com

specially coded implementations are provided by the manufacturer.1.1.4 ScaLAPACKThe ScaLAPACK software library, scheduled for completion by the end of 1994, will extend theLAPACK library to run scalably on MIMD, distributed memory, concurrent computers [10, 11].For such machines the memory hierarchy includes the o�-processor memory of other processors, inaddition to the hierarchy of registers, cache, and local memory on each processor. Like LAPACK,the ScaLAPACK routines are based on block-partitioned algorithms in order to minimize thefrequency of data movement between di�erent levels of the memory hierarchy. The fundamentalbuilding blocks of the ScaLAPACK library are distributed memory versions of the Level 2 andLevel 3 BLAS, and a set of Basic Linear Algebra Communication Subprograms (BLACS) [16, 26]for communication tasks that arise frequently in parallel linear algebra computations. In theScaLAPACK routines, all interprocessor communication occurs within the distributed BLASand the BLACS, so the source code of the top software layer of ScaLAPACK looks very similarto that of LAPACK.We envisage a number of user interfaces to ScaLAPACK. Initially, the interface will be similarto that of LAPACK, with some additional arguments passed to each routine to specify thedata layout. Once this is in place, we intend to modify the interface so the arguments to eachScaLAPACK routine are the same as in LAPACK. This will require information about the datadistribution of each matrix and vector to be hidden from the user. This may be done by meansof a ScaLAPACK initialization routine. This interface will be fully compatible with LAPACK.Provided \dummy" versions of the ScaLAPACK initialization routine and the BLACS are addedto LAPACK, there will be no distinction between LAPACK and ScaLAPACK at the applicationlevel, though each will link to di�erent versions of the BLAS and BLACS. Following on fromthis, we will experiment with object-based interfaces for LAPACK and ScaLAPACK, with thegoal of developing interfaces compatible with Fortran 90 [10] and C++ [24].1.2 Target ArchitecturesThe EISPACK and LINPACK software libraries were designed for supercomputers used in the1970s and early 1980s, such as the CDC-7600, Cyber 205, and Cray-1. These machines featuredmultiple functional units pipelined for good performance [43]. The CDC-7600 was basically ahigh-performance scalar computer, while the Cyber 205 and Cray-1 were early vector computers.The development of LAPACK in the late 1980s was intended to make the EISPACK and LIN-PACK libraries run e�ciently on shared memory, vector supercomputers. The ScaLAPACKsoftware library will extend the use of LAPACK to distributed memory concurrent supercom-puters. The development of ScaLAPACK began in 1991 and is expected to be completed by theend of 1994. 5

www.manaraa.com

The underlying concept of both the LAPACK and ScaLAPACK libraries is the use of block-partitioned algorithms to minimize data movement between di�erent levels in hierarchical mem-ory. Thus, the ideas discussed in this chapter for developing a library for dense linear algebracomputations are applicable to any computer with a hierarchical memory that (1) imposes a suf-�ciently large startup cost on the movement of data between di�erent levels in the hierarchy, andfor which (2) the cost of a context switch is too great to make �ne grain size multithreading worth-while. Our target machines are, therefore, medium and large grain size advanced-architecturecomputers. These include \traditional" shared memory, vector supercomputers, such as the CrayY-MP and C90, and MIMD distributed memory concurrent supercomputers, such as the IntelParagon, and Thinking Machines' CM-5, and the more recently announced IBM SP1 and CrayT3D concurrent systems. Since these machines have only very recently become available, most ofthe ongoing development of the ScaLAPACK library is being done on a 128-node Intel iPSC/860hypercube and on the 520-node Intel Delta system.The Intel Paragon supercomputer can have up to 2000 nodes, each consisting of an i860 processorand a communications processor. The nodes each have at least 16 Mbytes of memory, and areconnected by a high-speed network with the topology of a two-dimensional mesh. The CM-5 fromThinking Machines Corporation [53] supports both SIMD and MIMD programming models, andmay have up to 16k processors, though the largest CM-5 currently installed has 1024 processors.Each CM-5 node is a Sparc processor and up to 4 associated vector processors. Point-to-pointcommunication between nodes is supported by a data network with the topology of a \fat tree"[46]. Global communication operations, such as synchronization and reduction, are supportedby a separate control network. The IBM SP1 system is based on the same RISC chip used inthe IBM RS/6000 workstations and uses a multistage switch to connect processors. The CrayT3D uses the Alpha chip from Digital Equipment Corporation, and connects the processors in athree-dimensional torus.Future advances in compiler and hardware technologies in the mid to late 1990s are expectedto make multithreading a viable approach for masking communication costs. Since the blocksin a block-partitioned algorithm can be regarded as separate threads, our approach will still beapplicable on machines that exploit medium and coarse grain size multithreading.1.3 High-Quality, Reusable, Mathematical SoftwareIn developing a library of high-quality subroutines for dense linear algebra computations thedesign goals fall into three broad classes:� performance� ease-of-use� range-of-use 6

www.manaraa.com

1.3.1 PerformanceTwo important performance metrics are concurrent e�ciency and scalability. We seek goodperformance characteristics in our algorithms by eliminating, as much as possible, overhead dueto load imbalance, data movement, and algorithm restructuring. The way the data are distributed(or decomposed) over the memory hierarchy of a computer is of fundamental importance to thesefactors. Concurrent e�ciency, �, is de�ned as the concurrent speedup per processor [32], wherethe concurrent speedup is the execution time, Tseq, for the best sequential algorithm runningon one processor of the concurrent computer, divided by the execution time, T , of the parallelalgorithm running on Np processors. When direct methods are used, as in LU factorization, theconcurrent e�ciency depends on the problem size and the number of processors, so on a givenparallel computer and for a �xed number of processors, the running time should not vary greatlyfor problems of the same size. Thus, we may write,�(N;Np) = 1Np Tseq(N)T (N;Np) (1)where N represents the problem size. In dense linear algebra computations, the execution timeis usually dominated by the oating-point operation count, so the concurrent e�ciency is relatedto the performance, G, measured in oating-point operations per second by,G(N;Np) = Nptcalc �(N;Np) (2)where tcalc is the time for one oating-point operation. For iterative routines, such as eigensolvers,the number of iterations, and hence the execution time, depends not only on the problem size, butalso on other characteristics of the input data, such as condition number. A parallel algorithmis said to be scalable [37] if the concurrent e�ciency depends on the problem size and numberof processors only through their ratio. This ratio is simply the problem size per processor, oftenreferred to as the granularity. Thus, for a scalable algorithm, the concurrent e�ciency is constantas the number of processors increases while keeping the granularity �xed. Alternatively, Eq. 2shows that this is equivalent to saying that, for a scalable algorithm, the performance dependslinearly on the number of processors for �xed granularity.1.3.2 Ease-Of-UseEase-of-use is concerned with factors such as portability and the user interface to the library.Portability, in its most inclusive sense, means that the code is written in a standard language,such as Fortran, and that the source code can be compiled on an arbitrary machine to producea program that will run correctly. We call this the \mail-order software" model of portability,since it reects the model used by software servers such as netlib [20]. This notion of portabilityis quite demanding. It requires that all relevant properties of the computer's arithmetic and7

www.manaraa.com

architecture be discovered at runtime within the con�nes of a Fortran code. For example, ifit is important to know the overow threshold for scaling purposes, it must be determined atruntime without overowing, since overow is generally fatal. Such demands have resulted inquite large and sophisticated programs [28, 44] which must be modi�ed frequently to deal withnew architectures and software releases. This \mail-order" notion of software portability alsomeans that codes generally must be written for the worst possible machine expected to be used,thereby often degrading performance on all others. Ease-of-use is also enhanced if implementationdetails are largely hidden from the user, for example, through the use of an object-based interfaceto the library [24].1.3.3 Range-Of-UseRange-of-use may be gauged by how numerically stable the algorithms are over a range of inputproblems, and the range of data structures the library will support. For example, LINPACKand EISPACK deal with dense matrices stored in a rectangular array, packed matrices whereonly the upper or lower half of a symmetric matrix is stored, and banded matrices where onlythe nonzero bands are stored. In addition, some special formats such as Householder vectors areused internally to represent orthogonal matrices. There are also sparse matrices, which may bestored in many di�erent ways; but in this paper we focus on dense and banded matrices, themathematical types addressed by LINPACK, EISPACK, and LAPACK.2 The BLAS as the Key to PortabilityAt least three factors a�ect the performance of portable Fortran code.1. Vectorization. Designing vectorizable algorithms in linear algebra is usually straightfor-ward. Indeed, for many computations there are several variants, all vectorizable, but withdi�erent characteristics in performance (see, for example, [15]). Linear algebra algorithmscan approach the peak performance of many machines|principally because peak perfor-mance depends on some form of chaining of vector addition and multiplication operations,and this is just what the algorithms require. However, when the algorithms are realizedin straightforward Fortran 77 code, the performance may fall well short of the expectedlevel, usually because vectorizing Fortran compilers fail to minimize the number of memoryreferences|that is, the number of vector load and store operations.2. Data movement. What often limits the actual performance of a vector, or scalar, oating-point unit is the rate of transfer of data between di�erent levels of memory in the machine.Examples include the transfer of vector operands in and out of vector registers, the transferof scalar operands in and out of a high-speed scalar processor, the movement of data8

www.manaraa.com

between main memory and a high-speed cache or local memory, paging between actualmemory and disk storage in a virtual memory system, and interprocessor communicationon a distributed memory concurrent computer.3. Parallelism. The nested loop structure of most linear algebra algorithms o�ers con-siderable scope for loop-based parallelism. This is the principal type of parallelism thatLAPACK and ScaLAPACK presently aim to exploit. On shared memory concurrent com-puters, this type of parallelism can sometimes be generated automatically by a compiler,but often requires the insertion of compiler directives. On distributed memory concur-rent computers, data must be moved between processors. This is usually done by explicitcalls to message passing routines, although parallel language extensions such as CoherentParallel C [31] and Split-C [13] do the message passing implicitly.The question arises, \How can we achieve su�cient control over these three factors to obtain thelevels of performance that machines can o�er?" The answer is through use of the BLAS.There are now three levels of BLAS:Level 1 BLAS [45]: for vector operations, such as y �x+ yLevel 2 BLAS [18]: for matrix-vector operations, such as y �Ax+ �yLevel 3 BLAS [17]: for matrix-matrix operations, such as C �AB + �C.Here, A, B and C are matrices, x and y are vectors, and � and � are scalars.The Level 1 BLAS are used in LAPACK, but for convenience rather than for performance: theyperform an insigni�cant fraction of the computation, and they cannot achieve high e�ciency onmost modern supercomputers.The Level 2 BLAS can achieve near-peak performance on many vector processors, such as asingle processor of a CRAY X-MP or Y-MP, or Convex C-2 machine. However, on other vectorprocessors such as a CRAY-2 or an IBM 3090 VF, the performance of the Level 2 BLAS is limitedby the rate of data movement between di�erent levels of memory.The Level 3 BLAS overcome this limitation. This third level of BLAS performs O(n3) oating-point operations on O(n2) data, whereas the Level 2 BLAS perform only O(n2) operations onO(n2) data. The Level 3 BLAS also allow us to exploit parallelism in a way that is transparent tothe software that calls them. While the Level 2 BLAS o�er some scope for exploiting parallelism,greater scope is provided by the Level 3 BLAS, as Table 1 illustrates.9

www.manaraa.com

Table 1: Speed (Megaops) of Level 2 and Level 3 BLAS Operations on a CRAY Y-MP. Allmatrices are of order 500; U is upper triangular.Number of processors: 1 2 4 8Level 2: y �Ax+ �y 311 611 1197 2285Level 3: C �AB + �C 312 623 1247 2425Level 2: x Ux 293 544 898 1613Level 3: B UB 310 620 1240 2425Level 2: x U�1x 272 374 479 584Level 3: B U�1B 309 618 1235 23983 Block Algorithms and Their DerivationIt is comparatively straightforward to recode many of the algorithms in LINPACK and EISPACKso that they call Level 2 BLAS. Indeed, in the simplest cases the same oating-point operationsare done, possibly even in the same order: it is just a matter of reorganizing the software. Toillustrate this point, we consider the Cholesky factorization algorithm used in the LINPACKroutine SPOFA, which factorizes a symmetric positive de�nite matrix as A = UTU . We considerCholesky factorization because the algorithm is simple, and no pivoting is required. In Section4 we shall consider the slightly more complicated example of LU factorization.Suppose that after j� 1 steps the block A00 in the upper lefthand corner of A has been factoredas A00 = UT00 U00. The next row and column of the factorization can then be computed by writingA = UTU as 0BB@ A00 bj A02: ajj cTj: : A22 1CCA = 0BB@ UT00 0 0vTj ujj 0UT02 wj UT22 1CCA0BB@ U00 vj U020 ujj wTj0 0 U22 1CCAwhere bj, cj, vj, and wj are column vectors of length j� 1, and ajj and ujj are scalars. Equatingcoe�cients of the jth column, we obtainbj = UT00vjajj = vTj vj + u2jj:Since U00 has already been computed, we can compute vj and ujj from the equationsUT00vj = bju2jj = ajj � vTj vj:10

www.manaraa.com

The body of the code of the LINPACK routine SPOFA that implements the above method isshown in Figure 1. The same computation recoded in \LAPACK-style" to use the Level 2 BLASroutine STRSV (which solves a triangular system of equations) is shown in Figure 2. The callto STRSV has replaced the loop over K which made several calls to the Level 1 BLAS routineSDOT. (For reasons given below, this is not the actual code used in LAPACK | hence the term\LAPACK-style".)This change by itself is su�cient to result in large gains in performance on a number of machines|for example, from 72 to 251 megaops for a matrix of order 500 on one processor of a CRAYY-MP. Since this is 81% of the peak speed of matrix-matrix multiplication on this processor, wecannot hope to do very much better by using Level 3 BLAS.We can, however, restructure the algorithm at a deeper level to exploit the faster speed of theLevel 3 BLAS. This restructuring involves recasting the algorithm as a block algorithm|thatis, an algorithm that operates on blocks or submatrices of the original matrix.3.1 Deriving a Block AlgorithmTo derive a block form of Cholesky factorization, we partition the matrices as shown in Figure4, in which the diagonal blocks of A and U are square, but of di�ering sizes. We assume thatthe �rst block has already been factored as A00 = UT00U00, and that we now want to determinethe second block column of U consisting of the blocks U01 and U11. Equating submatrices in thesecond block of columns, we obtainA01 = UT00U01A11 = UT01U01 + UT11U11:Hence, since U00 has already been computed, we can compute U01 as the solution to the equationUT00U01 = A01by a call to the Level 3 BLAS routine STRSM; and then we can compute U11 fromUT11U11 = A11 � UT01U01:This involves �rst updating the symmetric submatrix A11 by a call to the Level 3 BLAS routineSSYRK, and then computing its Cholesky factorization. Since Fortran does not allow recursion,a separate routine must be called (using Level 2 BLAS rather than Level 3), named SPOTF2in Figure 3. In this way, successive blocks of columns of U are computed. The LAPACK-stylecode for the block algorithm is shown in Figure 3. This code runs at 49 megaops on an IBM3090, more than double the speed of the LINPACK code. On a CRAY Y-MP, the use of Level 3BLAS squeezes a little more performance out of one processor, but makes a large improvementwhen using all 8 processors. 11

www.manaraa.com

do j = 0, n-1info = j + 1s = 0.0e0jm1 = jif (jm1 .ge. 1) thendo k = 0, jm1 - 1t = a(k,j) - sdot(k,a(0,k),1,a(0,j),1)t = t/a(k,k)a(k,j) = ts = s + t*tend doend ifs = a(j,j) - sif (s .le. 0.0e0) go to 40a(j,j) = sqrt(s)end doFigure 1: The body of the LINPACK routine SPOFA for Cholesky factorization.do j = 0, n - 1call strsv('upper', 'transpose', 'non-unit', j, a, lda,a(0,j), 1)s = a(j,j) - sdot(j, a(0,j), 1, a(0,j), 1)if (s .le. zero) go to 20a(j,j) = sqrt(s)end doFigure 2: The body of the \LAPACK-style" routine SPOFA for Cholesky factorization.do j = 0, n-1, nbjb = min(nb, n-j)call strsm('left', 'upper', 'transpose', 'non-unit', j, jb,one, a, lda, a(0,j), lda)call ssyrk('upper', 'transpose', jb, j, -one, a(0,j), lda,one, a(j,j), lda)call spotf2('upper', jb, a(j,j), lda, info)if(info .ne. 0) go to 20end doFigure 3: The body of the \LAPACK-style" routine SPOFA for block Cholesky factorization. Inthis code fragment, nb denotes the width of the blocks.12

www.manaraa.com

A00 A01 A02

A01
T A11 A12

A02
T A12

T A22

=

U00
T 0 0

U01
T U11

T 0

U02
T U12

T U22
T

∗

U00 U01 U02

0 U11 U12

0 0 U22Figure 4: Partitioning of A, UT , and U into blocks. It is assumed that the �rst block has alreadybeen factored as A00 = UT00U00, and we next want to determine the block column consisting ofU01 and U11. Note that the diagonal blocks of A and U are square matrices.Table 2: Speed (Megaops) of Cholesky Factorization A = UTU for n = 500IBM 3090 VF, CRAY Y-MP, CRAY Y-MP,1 proc. 1 proc. 8 proc.j-variant: LINPACK 23 72 72j-variant: using Level 2 BLAS 24 251 378j-variant: using Level 3 BLAS 49 287 1225i-variant: using Level 3 BLAS 50 290 1414But that is not the end of the story, and the code given above is not the code actually used in theLAPACK routine SPOTRF. We mentioned earlier that for many linear algebra computationsthere are several algorithmic variants, often referred to as i-, j-, and k-variants, according toa convention introduced in [15] and used in [36]. The same is true of the corresponding blockalgorithms.It turns out that the j-variant chosen for LINPACK, and used in the above examples, is not thefastest on many machines, because it performs most of the work in solving triangular systemsof equations, which can be signi�cantly slower than matrix-matrix multiplication. The variantactually used in LAPACK is the i-variant, which relies on matrix-matrix multiplication for mostof the work.Table 2 summarizes the results. 13

www.manaraa.com

Table 3: Speed (Megaops) of SGETRF/DGETRF for Square Matrices of Order nMachine No. of Block Values of nprocessors size 100 200 300 400 500IBM RISC/6000-530 1 32 19 25 29 31 33Alliant FX/8 8 16 9 26 32 46 57IBM 3090J VF 1 64 23 41 52 58 63Convex C-240 4 64 31 60 82 100 112CRAY Y-MP 1 1 132 219 254 272 283CRAY-2 1 64 110 211 292 318 358Siemens/Fujitsu VP 400-EX 1 64 46 132 222 309 397NEC SX2 1 1 118 274 412 504 577CRAY Y-MP 8 64 195 556 920 1188 14083.2 Examples of Block Algorithms in LAPACKHaving discussed in detail the derivation of one particular block algorithm, we now describeexamples of the performance achieved with two well-known block algorithms: LU and Choleskyfactorizations. No extra oating-point operations nor extra working storage are required foreither of these simple block algorithms. (See Gallivan et al. [33] and Dongarra et al. [19] forsurveys of algorithms for dense linear algebra on high-performance computers.)Table 3 illustrates the speed of the LAPACK routine for LU factorization of a real matrix,SGETRF in single precision on CRAY machines, and DGETRF in double precision on all othermachines. Thus, 64-bit oating-point arithmetic is used on all machines tested. A block size of1 means that the unblocked algorithm is used, since it is faster than { or at least as fast as { ablock algorithm.LAPACK is designed to give high e�ciency on vector processors, high-performance \superscalar"workstations, and shared memory multiprocessors. LAPACK in its present form is less likelyto give good performance on other types of parallel architectures (for example, massively par-allel SIMD machines, or MIMD distributed memory machines), but the ScaLAPACK project,described in Section 1.1.4, is intended to adapt LAPACK to these new architectures. LAPACKcan also be used satisfactorily on all types of scalar machines (PCs, workstations, mainframes).Table 4 gives similar results for Cholesky factorization, extending the results given in Table 2.LAPACK, like LINPACK, provides LU and Cholesky factorizations of band matrices. The LIN-PACK algorithms can easily be restructured to use Level 2 BLAS, though restructuring has littlee�ect on performance for matrices of very narrow bandwidth. It is also possible to use Level 3BLAS, at the price of doing some extra work with zero elements outside the band [22]. This14

www.manaraa.com

Table 4: Speed (Megaops) of SPOTRF/DPOTRF for Matrices of Order n. Here UPLO = `U',so the factorization is of the form A = UTU .Machine No. of Block Values of nprocessors size 100 200 300 400 500IBM RISC/6000-530 1 32 21 29 34 36 38Alliant FX/8 8 16 10 27 40 49 52IBM 3090J VF 1 48 26 43 56 62 67Convex C-240 4 64 32 63 82 96 103CRAY Y-MP 1 1 126 219 257 275 285CRAY-2 1 64 109 213 294 318 362Siemens/Fujitsu VP 400-EX 1 1 53 145 237 312 369NEC SX2 1 1 155 387 589 719 819CRAY Y-MP 8 32 146 479 845 1164 1393process becomes worthwhile for large matrices and semi-bandwidth greater than 100 or so.4 LU FactorizationIn this section, we �rst discuss the uses of dense LU factorization in several �elds. We nextdevelop a block-partitioned version of the k, or right-looking, variant of the LU factorizationalgorithm. In subsequent sections, the parallelization of this algorithm is described in detail inorder to highlight the issues and considerations that must be taken into account in developing ane�cient, scalable, and transportable dense linear algebra library for MIMD, distributed memory,concurrent computers.4.1 Uses of LU Factorization in Science and EngineeringA major source of large dense linear systems is problems involving the solution of boundary inte-gral equations. These are integral equations de�ned on the boundary of a region of interest. Allexamples of practical interest compute some intermediate quantity on a two-dimensional bound-ary and then use this information to compute the �nal desired quantity in three-dimensionalspace. The price one pays for replacing three dimensions with two is that what started as asparse problem in O(n3) variables is replaced by a dense problem in O(n2).Dense systems of linear equations are found in numerous applications, including:� airplane wing design; 15

www.manaraa.com

� radar cross-section studies;� ow around ships and other o�-shore constructions;� di�usion of solid bodies in a liquid;� noise reduction; and� di�usion of light through small particles.The electromagnetics community is a major user of dense linear systems solvers. Of particularinterest to this community is the solution of the so-called radar cross-section problem. In thisproblem, a signal of �xed frequency bounces o� an object; the goal is to determine the intensityof the reected signal in all possible directions. The underlying di�erential equation may vary,depending on the speci�c problem. In the design of stealth aircraft, the principal equation isthe Helmholtz equation. To solve this equation, researchers use the method of moments [38, 56].In the case of uid ow, the problem often involves solving the Laplace or Poisson equation.Here, the boundary integral solution is known as the panel method [40, 41], so named from thequadrilaterals that discretize and approximate a structure such as an airplane. Generally, thesemethods are called boundary element methods.Use of these methods produces a dense linear system of size O(N) by O(N), where N is thenumber of boundary points (or panels) being used. It is not unusual to see size 3N by 3N ,because of three physical quantities of interest at every boundary element.A typical approach to solving such systems is to use LU factorization. Each entry of the matrix iscomputed as an interaction of two boundary elements. Often, many integrals must be computed.In many instances, the time required to compute the matrix is considerably larger than the timefor solution.Only the builders of stealth technology who are interested in radar cross-sections are consideringusing direct Gaussian elimination methods for solving dense linear systems. These systems arealways symmetric and complex, but not Hermitian.For further information on various methods for solving large dense linear algebra problems thatarise in computational uid dynamics, see the report by Alan Edelman [30].4.2 Derivation of a Block Algorithm for LU FactorizationSuppose the M � N matrix A is partitioned as shown in Figure 5, and we seek a factorizationA = LU , where the partitioning of L and U is also shown in Figure 5. Then we may write,L00U00 = A00 (3)L10U00 = A10 (4)16

www.manaraa.com

A00

A10 A11

A01

=

L00

L10 L11

0

∗

U00

U110

U01Figure 5: Block LU factorization of the partitioned matrix A. A00 is r � r, A01 is r � (N � r),A10 is (M � r)� r, and A11 is (M � r)� (N � r). L00 and L11 are lower triangular matrices with1's on the main diagonal, and U00 and U11 are upper triangular matrices.L00U01 = A01 (5)L10U01 + L11U11 = A11 (6)where A00 is r � r, A01 is r � (N � r), A10 is (M � r) � r, and A11 is (M � r) � (N � r). L00and L11 are lower triangular matrices with 1s on the main diagonal, and U00 and U11 are uppertriangular matrices.Equations 3 and 4 taken together perform an LU factorization on the �rstM �r panel of A (i.e.,A00 and A10). Once this is completed, the matrices L00, L10, and U00 are known, and the lowertriangular system in Eq. 5 can be solved to give U01. Finally, we rearrange Eq. 6 as,A011 = A11 � L10U01 = L11U11 (7)>From this equation we see that the problem of �nding L11 and U11 reduces to �nding the LUfactorization of the (M � r) � (N � r) matrix A011. This can be done by applying the stepsoutlined above to A011 instead of to A. Repeating these steps K times, whereK = min(dM=re; dN=re) (8)we obtain the LU factorization of the original M � N matrix A. For an in-place algorithm, Ais overwritten by L and U { the 1s on the diagonal of L do not need to be stored explicitly.Similarly, when A is updated by Eq. 7 this may also be done in place.After k of theseK steps, the �rst kr columns of L and the �rst kr rows of U have been evaluated,and matrix A has been updated to the form shown in Figure 6, in which panel B is (M �kr)� rand C is r � (N � (k � 1)r). Step k + 1 then proceeds as follows,1. factor B to form the next panel of L, performing partial pivoting over rows if necessary(see Figure 14). This evaluates the matrices L0, L1, and U0 in Figure 6.17

www.manaraa.com

L

U

B
C

E

L

U

E’L1

U1L0
U0Figure 6: Stage k +1 of the block LU factorization algorithm showing how the panels B and C,and the trailing submatrix E are updated. The trapezoidal submatrices L and U have alreadybeen factored in previous steps. L has kr columns, and U has kr rows. In the step shown anotherr columns of L and r rows of U are evaluated.2. solve the triangular system L0U1 = C to get the next row of blocks of U .3. do a rank-r update on the trailing submatrix E, replacing it with E 0 = E � L1U1.The LAPACK implementation of this form of LU factorization uses the Level 3 BLAS routinesxTRSM and xGEMM to perform the triangular solve and rank-r update. We can regard thealgorithm as acting on matrices that have been partitioned into blocks of r � r elements, asshown in Figure 7.5 Data DistributionThe fundamental data object in the LU factorization algorithm presented in Section 4.2 is ablock-partitioned matrix. In this section, we describe the block-cyclic method for distributingsuch a matrix over a two-dimensional mesh of processes, or template. In general, each processhas an independent thread of control, and with each process is associated some local memorydirectly accessible only by that process. The assignment of these processes to physical processorsis a machine-dependent optimization issue, and will be considered later in Section 7.An important property of the class of data distribution we shall use is that independent de-compositions are applied over rows and columns. We shall, therefore, begin by considering thedistribution of a vector ofM data objects over P processes. This can be described by a mappingof the global index, m, of a data object to an index pair (p; i), where p speci�es the process to18

www.manaraa.com

A0,0 A0,1 A0,2 A0,3 A0,4 A0,5

A1,0 A1,1 A1,2 A1,3 A1,4 A1,5

A2,0 A2,1 A2,2 A2,3 A2,4 A2,5

A3,0 A3,1 A3,2 A3,3 A3,4 A3,5

A4,0 A4,1 A4,2 A4,3 A4,4 A4,5

A5,0 A5,1 A5,2 A5,3 A5,4 A5,5Figure 7: Block-partitioned matrix A. Each block Ai;j consists of r � r matrix elements.which the data object is assigned, and i speci�es the location in the local memory of p at whichit is stored. We shall assume 0 � m < M and 0 � p < P .Two common decompositions are the block and the cyclic decompositions [55, 32]. The blockdecomposition, that is often used when the computational load is distributed homogeneouslyover a regular data structure such as a Cartesian grid, assigns contiguous entries in the globalvector to the processes in blocks. m 7! (bm=Lc ;m mod L) ; (9)where L = dM=P e. The cyclic decomposition (also known as the wrapped or scattered decom-position) is commonly used to improve load balance when the computational load is distributedinhomogeneously over a regular data structure. The cyclic decomposition assigns consecutiveentries in the global vector to successive di�erent processes,m 7! (m mod P; bm=P c) (10)Examples of the block and cyclic decompositions are shown in Figure 8.The block cyclic decomposition is a generalization of the block and cyclic decompositions in whichblocks of consecutive data objects are distributed cyclically over the processes. In the block cyclicdecomposition the mapping of the global index, m, can be expressed as m 7! (p; b; i), where p isthe process number, b is the block number in process p, and i is the index within block b to whichm is mapped. Thus, if the number of data objects in a block is r, the block cyclic decompositionmay be written, m 7! $m mod Tr % ; �mT � ; m mod r! (11)19

www.manaraa.com

m 0 1 2 3 4 5 6 7 8 9p 0 0 0 0 1 1 1 1 2 2i 0 1 2 3 0 1 2 3 0 1(a) Block m 0 1 2 3 4 5 6 7 8 9p 0 1 2 0 1 2 0 1 2 0i 0 0 0 1 1 1 2 2 2 3(b) CyclicFigure 8: Examples of block and cyclic decompositions of M = 10 data objects over P = 3processes.m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22p 0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2b 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3i 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0(a) m 7! (p; b; i)p 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2b 0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3 0 0 1 1 2 2 3i 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0m 0 1 6 7 12 13 18 19 2 3 8 9 14 15 20 21 4 5 10 11 16 17 22(b) (p; b; i) 7! mFigure 9: An example of the block cyclic decomposition of M = 23 data objects over P = 3processes for a block size of r = 2. (a) shows the mapping from global index, m, to the triplet(p; b; i), and (b) shows the inverse mapping.where T = rP . It should be noted that this reverts to the cyclic decomposition when r = 1,with local index i = 0 for all blocks. A block decomposition is recovered when r = L, in whichcase there is a single block in each process with block number b = 0. The inverse mapping of thetriplet (p; b; i) to a global index is given by,(p; b; i) 7! Br+ i = pr + bT + i (12)where B = p+ bP is the global block number. The block cyclic decomposition is one of the datadistributions supported by High Performance Fortran (HPF) [42], and has been previously used,in one form or another, by several researchers (see [1, 4, 5, 9, 23, 27, 50, 52, 54] for examples ofits use). The block cyclic decomposition is illustrated with an example in Figure 9.The form of the block cyclic decomposition given by Eq. 11 ensures that the block with globalindex 0 is placed in process 0, the next block is placed in process 1, and so on. However, it issometimes necessary to o�set the processes relative to the global block index so that, in general,the �rst block is placed in process p0, the next in process p0 + 1, and so on. We, therefore,generalize the block cyclic decomposition by replacing m on the righthand side of Eq. 11 by20

www.manaraa.com

m0 = m+ rp0 to give,m 7! $m0 mod Tr % ; $m0T % ; m0 mod r!= $m mod Tr %+ p0! mod P; �m+ rp0T � ; m mod r! : (13)Equation 12 may also be generalized to,(p; b; i) 7! Br + i = (p � p0)r + bT + i (14)where now the global block number is given by B = (p � p0) + bP . It should be noted thatin processes with p < p0, block 0 is not within the range of the block cyclic mapping and it is,therefore, an error to reference it in any way.In decomposing an M �N matrix we apply independent block cyclic decompositions in the rowand column directions. Thus, suppose the matrix rows are distributed with block size r and o�setp0 over P processes by the block cyclic mapping �r;p0;P , and the matrix columns are distributedwith block size s and o�set q0 over Q processes by the block cyclic mapping �s;q0;Q. Then thematrix element indexed globally by (m;n) is mapped as follows,m �7�! (p; b; i)n �7�! (q; d; j): (15)The decomposition of the matrix can be regarded as the tensor product of the row and columndecompositions, and we can write,(m;n) 7! ((p; q); (b; d); (i; j)): (16)The block cyclic matrix decomposition given by Eqs. 15 and 16 distributes blocks of size r � sto a mesh of P �Q processes. We shall refer to this mesh as the process template, and refer toprocesses by their position in the template. Equation 16 says that global index (m;n) is mappedto process (p; q), where it is stored in the block at location (b; d) in a two-dimensional array ofblocks. Within this block it is stored at location (i; j). The decomposition is completely speci�edby the parameters r, s, p0, q0, P , and Q. In Figure 10 an example is given of the block cyclicdecomposition of a 36� 80 matrix for block size 4� 5, a process template 3� 4, and a templateo�set (p0; q0) = (0; 0). Figure 11 shows the same example but for a template o�set of (1; 2).The block cyclic decomposition can reproduce most of the data distributions commonly used inlinear algebra computations on parallel computers. For example, if Q = 1 and r = dM=P e theblock row decomposition is obtained. Similarly, P = 1 and s = dN=Qe gives a block columndecomposition. These decompositions, together with row and column cyclic decompositions, areshown in Figure 12. Other commonly used block cyclic matrix decompositions are shown inFigure 13. 21

www.manaraa.com

6 Parallel ImplementationIn this section we describe the parallel implementation of LU factorization, with partial pivotingover rows, for a block-partitioned matrix. The matrix, A, to be factored is assumed to havea block cyclic decomposition, and at the end of the computation is overwritten by the lowerand upper triangular factors, L and U . This implicitly determines the decomposition of L andU . Quite a high-level description is given here since the details of the parallel implementationinvolve optimization issues that will be addressed in Section 7.The sequential LU factorization algorithm described in Section 4.2 uses square blocks. Althoughin the parallel algorithm we could choose to decompose the matrix using nonsquare blocks, thiswould result in a more complicated code, and additional sources of concurrent overhead. ForLU factorization we, therefore, restrict the decomposition to use only square blocks, so that theblocks used to decompose the matrix are the same as those used to partition the computation.If the block size is r� r, then an M �N matrix consists of Mb �Nb blocks, where Mb = dM=reand Nb = dN=re.As discussed in Section 4.2, LU factorization proceeds in a series of sequential steps indexed byk = 0;min(Mb; Nb)� 1, in each of which the following three tasks are performed,1. factor the kth column of blocks, performing pivoting if necessary. This evaluates thematrices L0, L1, and U0 in Figure 6.2. evaluate the kth block row of U by solving the lower triangular system L0U1 = C.3. do a rank-r update on the trailing submatrix E, replacing it with E 0 = E � L1U1.We now consider the parallel implementation of each of these tasks. The computation in thefactorization step involves a single column of blocks, and these lie in a single column of theprocess template. In the kth factorization step, each of the r columns in block column k isprocessed in turn. Consider the ith column in block column k. The pivot is selected by �ndingthe element with largest absolute value in this column between row kr + i and the last row,inclusive. The elements involved in the pivot search at this stage are shown shaded in Figure 14.Having selected the pivot, the value of the pivot and its row are broadcast to all other processors.Next, pivoting is performed by exchanging the entire row kr+i with the row containing the pivot.We exchange entire rows, rather than just the part to the right of the columns already factored,in order to simplify the application of the pivots to the righthand side in any subsequent solvephase. Finally, each value in the column below the pivot is divided by the pivot. If a cycliccolumn decomposition is used, like that shown in Figure 12(d), only one processor is involved inthe factorization of the block column, and no communication is necessary between the processes.However, in general P processes are involved, and communication is necessary in selecting thepivot, and exchanging the pivot rows. 22

www.manaraa.com

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3

0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0

p,q D

B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

9

10

11 (a) Assignment of global block indices, (B;D), to processes, (p; q).
0,0 0,4 0,8 0,12 0,1 0,5 0,9 0,13 0,2 0,6 0,10 0,14 0,3 0,7 0,11 0,15

3,0 3,4 3,8 3,12 3,1 3,5 3,9 3,13 3,2 3,6 3,10 3,14 3,3 3,7 3,11 3,15

6,0 6,4 6,8 6,12 6,1 6,5 6,9 6,13 6,2 6,6 6,10 6,14 6,3 6,7 6,11 6,15

9,0 9,4 9,8 9,12 9,1 9,5 9,9 9,13 9,2 9,6 9,10 9,14 9,3 9,7 9,11 9,15

1,0 1,4 1,8 1,12 1,1 1,5 1,9 1,13 1,2 1,6 1,10 1,14 1,3 1,7 1,11 1,15

4,0 4,4 4,8 4,12 4,1 4,5 4,9 4,13 4,2 4,6 4,10 4,14 4,3 4,7 4,11 4,15

7,0 7,4 7,8 7,12 7,1 7,5 7,9 7,13 7,2 7,6 7,10 7,14 7,3 7,7 7,11 7,15

10,0 10,4 10,8 10,12 10,1 10,5 10,9 10,13 10,2 10,6 10,10 10,14 10,3 10,7 10,11 10,15

2,0 2,4 2,8 2,12 2,1 2,5 2,9 2,13 2,2 2,6 2,10 2,14 2,3 2,7 2,11 2,15

5,0 5,4 5,8 5,12 5,1 5,5 5,9 5,13 5,2 5,6 5,10 5,14 5,3 5,7 5,11 5,15

8,0 8,4 8,8 8,12 8,1 8,5 8,9 8,13 8,2 8,6 8,10 8,14 8,3 8,7 8,11 8,15

11,0 11,4 11,8 11,12 11,1 11,5 11,9 11,13 11,2 11,6 11,10 11,14 11,3 11,7 11,11 11,15

0,0 0,4 0,8 0,12

3,0 3,4 3,8 3,12

6,0 6,4 6,8 6,12

9,0 9,4 9,8 9,12

B,D
q

p

0 1 2 3

0

1

2 (b) Global blocks, (B;D), in each process, (p; q).Figure 10: Block cyclic decomposition of a 36� 80 matrix with a block size of 4� 5, onto a 3� 4process template. Each small rectangle represents one matrix block { individual matrix elementsare not shown. In (a), shading is used to emphasize the process template that is periodicallystamped over the matrix, and each block is labeled with the process to which it is assigned. In(b), each shaded region shows the blocks in one process, and is labeled with the correspondingglobal block indices. In both �gures, the black rectangles indicate the blocks assigned to process(0; 0). 23

www.manaraa.com

1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,10,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0

p,q D

B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

9

10

11 (a) Assignment of global block indices, (B;D), to processes, (p; q).
— — — — — — — — — — — — — — — — — — — —

— 2,2 2,6 2,10 2,14 — 2,3 2,7 2,11 2,15 2,0 2,4 2,8 2,12 — 2,1 2,5 2,9 2,13 —

— 5,2 5,6 5,10 2,14 — 5,3 5,7 5,11 5,15 5,0 5,4 5,8 5,12 — 5,1 5,5 5,9 5,13 —

— 8,2 8,6 8,10 8,14 — 8,3 8,7 8,11 8,15 8,0 8,4 8,8 8,12 — 8,1 8,5 8,9 8,13 —

— 11,2 11,6 11,10 11,14 — 11,3 11,7 11,11 11,15 11,0 11,4 11,8 11,12 — 11,1 11,5 11,9 11,13 —

— 0,2 0,6 0,10 0,14 — 0,3 0,7 0,11 0,15 0,0 0,4 0,8 0,12 — 0,1 0,5 0,9 0,13 —

— 3,2 3,6 3,10 3,14 — 3,3 3,7 3,11 3,15 3,0 3,4 3,8 3,12 — 3,1 3,5 3,9 3,13 —

— 6,2 6,6 6,10 6,14 — 6,3 6,7 6,11 6,15 6,0 6,4 6,8 6,12 — 6,1 6,5 6,9 6,13 —

— 9,2 9,6 9,10 9,14 — 9,3 9,7 9,11 9,15 9,0 9,4 9,8 9,12 — 9,1 9,5 9,9 9,13 —

— — — — — — — — — — — — — — — — — — — —

— 1,2 1,6 1,10 1,14 — 1,3 1,7 1,11 1,15 1,0 1,4 1,8 1,12 — 1,1 1,5 1,9 1,13 —

— 4,2 4,6 4,10 4,14 — 4,3 4,7 4,11 4,15 4,0 4,4 4,8 4,12 — 4,1 4,5 4,9 4,13 —

— 7,2 7,6 7,10 7,14 — 7,3 7,7 7,11 7,15 7,0 7,4 7,8 7,12 — 7,1 7,5 7,9 7,13 —

— 10,2 10,6 10,10 10,14 — 10,3 10,7 10,11 10,15 10,0 10,4 10,8 10,12 — 10,1 10,5 10,9 10,13 —

— — — — — — — — — — — — — — — — — — — —

2,2 2,6 2,10 2,14

5,2 5,6 5,10 5,14

8,2 8,6 8,10 8,14

11,2 11,6 11,10 11,14

B,D
q

p

0 1 2 3

0

1

2 (b) Global blocks, (B;D), in each process, (p; q).Figure 11: The same matrix decomposition as shown in Figure 10, but for a template o�set of(p0; q0) = (1; 2). Dashed entries in (b) indicate that the block does not contain any data. Inboth �gures, the black rectangles indicate the blocks assigned to process (0; 0).24

www.manaraa.com

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0

2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0

2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0

3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0(a) r = 3, s = 10, P = 4, Q = 1
0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0

3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0

3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0

0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0(b) r = 1, s = 10, P = 4, Q = 1
0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3(c) r = 10, s = 3, P = 1, Q = 4
0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1(d) r = 10, s = 1, P = 1, Q = 4Figure 12: These 4 �gures show di�erent ways of decomposing a 10 � 10 matrix. Each cellrepresents a matrix element, and is labeled by the position, (p; q), in the template of the processto which it is assigned. To emphasize the pattern of decomposition, the matrix entries assignedto the process in the �rst row and column of the template are shown shaded, and each separateshaded region represents a matrix block. Figures (a) and (b) show block and cyclic row-orienteddecompositions, respectively, for 4 nodes. In �gures (c) and (d) the corresponding column-oriented decompositions are shown. Below each �gure we give the values of r, s, P , and Qcorresponding to the decomposition. In all cases p0 = q0 = 0.25

www.manaraa.com

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3

3,0 3,0 3,0 3,1 3,1 3,1 3,2 3,2 3,2 3,3(a) r = 3, s = 3, P = 4, Q = 4
0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1(b) r = 3, s = 1, P = 4, Q = 4
0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3

3,0 3,0 3,0 3,1 3,1 3,1 3,2 3,2 3,2 3,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3

2,0 2,0 2,0 2,1 2,1 2,1 2,2 2,2 2,2 2,3

3,0 3,0 3,0 3,1 3,1 3,1 3,2 3,2 3,2 3,3

0,0 0,0 0,0 0,1 0,1 0,1 0,2 0,2 0,2 0,3

1,0 1,0 1,0 1,1 1,1 1,1 1,2 1,2 1,2 1,3(c) r = 1, s = 3, P = 4, Q = 4
0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1

2,0 2,1 2,2 2,3 2,0 2,1 2,2 2,3 2,0 2,1

3,0 3,1 3,2 3,3 3,0 3,1 3,2 3,3 3,0 3,1

0,0 0,1 0,2 0,3 0,0 0,1 0,2 0,3 0,0 0,1

1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3 1,0 1,1(d) r = 1, s = 1, P = 4, Q = 4Figure 13: These 4 �gures show di�erent ways of decomposing a 10�10 matrix over 16 processesarranged as a 4�4 template. Below each �gure we give the values of r, s, P , and Q correspondingto the decomposition. In all cases p0 = q0 = 0.26

www.manaraa.com

L

U

column
kr+i

kr+i
row

pivot
row

exchange
rows

Figure 14: This �gure shows pivoting for step i of the kth stage of LU factorization. Theelement with largest absolute value in the gray shaded part of column kr + i is found, and therow containing it is exchanged with row kr + i. If the rows exchanged lie in di�erent processes,communication may be necessary.The solution of the lower triangular system L0U1 = C to evaluate the kth block row of Uinvolves a single row of blocks, and these lie in a single row of the process template. If a cyclicrow decomposition is used, like that shown in Figure 12(b), only one processor is involved in thetriangular solve, and no communication is necessary between the processes. However, in generalQ processes are involved, and communication is necessary to broadcast the lower triangularmatrix, L0, to all processes in the row. Once this has been done, each process in the rowindependently performs a lower triangular solve for the blocks of C that it holds.The communication necessary to update the trailing submatrix at step k takes place in two steps.First, each process holding part of L1 broadcasts these blocks to the other processes in the samerow of the template. This may be done in conjunction with the broadcast of L0, mentionedin the preceding paragraph, so that all of the factored panel is broadcast together. Next, eachprocess holding part of U1 broadcasts these blocks to the other processes in the same column ofthe template. Each process can then complete the update of the blocks that it holds with nofurther communication.A pseudocode outline of the parallel LU factorization algorithm is given in Figure 15. There aretwo points worth noting in Figure 15. First, the triangular solve and update phases operate onmatrix blocks and may, therefore, be done with parallel versions of the Level 3 BLAS (speci�cally,xTRSM and xGEMM, respectively). The factorization of the column of blocks, however, involvesa loop over matrix columns. Hence, is it not a block-oriented computation, and cannot be27

www.manaraa.com

performed using the Level 3 BLAS. The second point to note is that most of the parallelism inthe code comes from updating the trailing submatrix since this is the only phase in which all theprocesses are busy.Figure 15 also shows quite clearly where communication is required; namely, in �nding the pivot,exchanging pivot rows, and performing various types of broadcast. The exact way in which thesecommunications are done and interleaved with computation generally has an important e�ect onperformance, and will be discussed in more detail in Section 7.Figure 15 refers to broadcasting data to all processes in the same row or column of the template.This is a common operation in parallel linear algebra algorithms, so the idea will be describedhere in a little more detail. Consider, for example, the task of broadcasting the lower triangularblock, L0, to all processes in the same row of the template, as required before solving L0U1 = C.If L0 is in process (p; q), then it will be broadcast to all processes in row p of the process template.As a second example, consider the broadcast of L1 to all processes in the same template row, asrequired before updating the trailing submatrix. This type of \rowcast" is shown schematicallyin Figure 16(a). If L1 is in column q of the template, then each process (p; q) broadcasts itsblocks of L1 to the other processes in row p of the template. Loosely speaking, we can say thatL0 and L1 are broadcast along the rows of the template. This type of data movement is the sameas that performed by the Fortran 90 routine SPREAD [7]. The broadcast of U1 to all processesin the same template column is very similar. This type of communication is sometimes referredto as a \colcast", and is shown in Figure 16(b).7 Optimization, Tuning, and Trade-o�sIn this section, we shall examine techniques for optimizing the basic LU factorization codepresented in Section 4.2. Among the issues to be considered are the assignment of processes tophysical processors, the arrangement of the data in the local memory of each process, the trade-o�between load imbalance and communication latency, the potential for overlapping communicationand calculation, and the type of algorithm used to broadcast data. Many of these issues areinterdependent, and in addition the portability and ease of code maintenance and use must beconsidered. For further details of the optimization of parallel LU factorization algorithms forspeci�c concurrent machines, together with timing results, the reader is referred to the work ofChu and George [12], Geist and Heath [34], Geist and Romine [35], Van de Velde [55], Brent[8], Hendrickson and Womble [39], Lichtenstein and Johnsson [47], and Dongarra and co-workers[10, 25]. 28

www.manaraa.com

7.1 Mapping Logical Memory to Physical MemoryIn Section 5, a logical (or virtual) matrix decomposition was described in which the global index(m;n) is mapped to a position, (p; q), in a logical process template, a position, (b; d), in alogical array of blocks local to the process, and a position, (i; j), in a logical array of matrixelements local to the block. Thus, the block cyclic decomposition is hierarchical, and attemptsto represent the hierarchical memory of advanced-architecture computers. Although the parallelLU factorization algorithm can be speci�ed solely in terms of this logical hierarchical memory,its performance depends on how the logical memory is mapped to physical memory.7.1.1 Assignment of Processes to ProcessorsConsider, �rst, the assignment of processes, (p; q), to physical processors. In general, more thanone process may be assigned to a processor, so the problem may be overdecomposed. To avoidload imbalance the same number of processes should be assigned to each processor as nearlyas possible. If this condition is satis�ed, the assignment of processes to processors can stilla�ect performance by inuencing the communication overhead. On recent distributed memorymachines, such as the Intel Delta and CM-5, the time to send a single message between twoprocessors is largely independent of their physical location [29, 48, 49], and hence the assignmentof processes to processors does not have much direct e�ect on performance. However, whena collective communication task, such as a broadcast, is being done, contention for physicalresources can degrade performance. Thus, the way in which processes are assigned to processorscan a�ect performance if some assignments result in di�ering amounts of contention. Logarithmiccontention-free broadcast algorithms have been developed for processors connected as a two-dimensional mesh [6, 51], so on such machines process (p; q) is usually mapped to the processorat position (p; q) in the mesh of processors. Such an assignment also ensures that the multiple one-dimensional broadcasts of L1 and U1 along the rows and columns of the template, respectively,do not give rise to contention.7.1.2 Layout of Local Process MemoryThe layout of matrix blocks in the local memory of a process, and the arrangement of matrixelements within each block, can also a�ect performance. Here, tradeo�s among several factorsneed to be taken into account. When communicatingmatrix blocks, for example in the broadcastsof L1 and U1, we would like the data in each block to be contiguous in physical memory so thereis no need to pack them into a communication bu�er before sending them. On the other hand,when updating the trailing submatrix, E, each process multiplies a column of blocks by a rowof blocks, to do a rank-r update on the part of E that it contains. If this were done as a seriesof separate block-block matrix multiplications, as shown in Figure 18(a), the performance would29

www.manaraa.com

be poor except for su�ciently large block sizes, r, since the vector and/or pipeline units onmost processors would not be fully utilized, as may be seen in Figure 17 for the i860 processor.Instead, we arrange the loops of the computation as shown in Figure 18(b). Now, if the dataare laid out in physical memory �rst by running over the i index and then over the d index theinner two loops can be merged, so that the length of the inner loop is now rdmax. This generallyresults in much better vector/pipeline performance. The b and j loops in Figure 18(b) can alsobe merged, giving the algorithm shown in Figure 18(c). This is just the outer product form ofthe multiplication of an rdmax � r by an r � rbmax matrix, and would usually be done by a callto the Level 3 BLAS routine xGEMM of which an assembly coded sequential version is availableon most machines. Note that in Figure 18(c) the order of the inner two loops is appropriate for aFortran implementation { for the C language this order should be reversed, and the data shouldbe stored in each process by rows instead of by columns.We have found in our work on the Intel iPSC/860 hypercube and the Delta system that it is betterto optimize for the sequential matrix multiplication with an (i; d; j; b) ordering of memory in eachprocess, rather than adopting an (i; j; d; b) ordering to avoid bu�er copies when communicatingblocks. However, there is another reason for doing this. On most distributed memory computersthe message startup cost is su�ciently large that it is preferable wherever possible to send dataas one large message rather than as several smaller messages. Thus, when communicating L1and U1 the blocks to be broadcast would be amalgamated into a single message, which requiresa bu�er copy. The emerging Message Passing Interface (MPI) standard [21] provides supportfor noncontiguous messages, so in the future the need to avoid bu�er copies will not be of suchconcern to the application developer.7.2 Tradeo�s between Load Balance and Communication LatencyWe have discussed the mapping of the logical hierarchical memory to physical memory. In addi-tion, we have pointed out the importance of maintaining long inner loops to get good sequentialperformance for each process, and the desirability of sending a few large messages rather thanmany smaller ones. We next consider load balance issues. Assuming that equal numbers ofprocesses have been assigned to each processor, load imbalance arises in two phases of the par-allel LU factorization algorithm; namely, in factoring each column block, which involves onlyP processes, and in solving the lower triangular system to evaluate each row block of U , whichinvolves only Q processes. If the time for data movement is negligible, the aspect ratio of thetemplate that minimizes load imbalance in step k of the algorithm is,PQ = Sequential time to factor column blockSequential time for triangular solve= Mb � k � 1=3 + O(1=r2)Nb � k � 1 + O(1=r2) (17)30

www.manaraa.com

whereMb�Nb is the matrix size in blocks, and r the block size. Thus, the optimal aspect ratio ofthe template should be the same as the aspect ratio of the matrix, i.e.,Mb=Nb in blocks, orM=Nin elements. If the e�ect of communication time is included then we must take into account therelative times taken to locate and broadcast the pivot information, and the time to broadcast thelower triangular matrix, L0, along a row of the template. For both tasks the communication timeincreases with the number of processes involved, and since the communication time associatedwith the pivoting is greater than that associated with the triangular solve, we would expect theoptimum aspect ratio of the template to be less than M=N . In fact, for our runs on the IntelDelta system we found an aspect ratio, P=Q, of between 1/4 and 1/8 to be optimal for mostproblems with square matrices, and that performance depends rather weakly on the aspect ratio,particularly for large grain sizes. Some typical results are shown in Figure 19 for 256 processors,which show a variation of less than 20% in performance as P=Q varies between 1/16 and 1 forthe largest problem.The block size, r, also a�ects load balance. Here the tradeo� is between the load imbalance thatarises as rows and columns of the matrix are eliminated as the algorithm progresses, and commu-nication startup costs. The block cyclic decomposition seeks to maintain good load balance bycyclically assigning blocks to processes, and the load balance is best if the blocks are small. Onthe other hand, cumulative communication startup costs are less if the block size is large since,in this case, fewer messages must be sent (although the total volume of data sent is independentof the block size). Thus, there is a block size that optimally balances the load imbalance andcommunication startup costs.7.3 Optimality and Pipelining Tradeo�sThe communication algorithms used also inuence performance. In the LU factorization algo-rithm, all the communication can be done by moving data along rows and/or columns of theprocess template. This type of communication can be done by passing from one process to thenext along the row or column. We shall call this a \ring" algorithm, although the ring may, ormay not, be closed. An alternative is to use a spanning tree algorithm, of which there are severalvarieties. The complexity of the ring algorithm is linear in the number of processes involved,whereas that of spanning tree algorithms is logarithmic (for example, see [6]). Thus, consideredin isolation, the spanning tree algorithms are preferable to a ring algorithm. However, in a span-ning tree algorithm, a process may take part in several of the logarithmic steps, and in someimplementations these algorithms act as a barrier. In a ring algorithm, each process needs tocommunicate only once, and can then continue to compute, in e�ect overlapping the communi-cation with computation. An algorithm that interleaves communication and calculation in thisway is often referred to as a pipelined algorithm. In a pipelined LU factorization algorithm withno pivoting, communication and calculation would ow in waves across the matrix. Pivotingtends to inhibit this advantage of pipelining. 31

www.manaraa.com

In the pseudocode in Figure 15, we do not specify how the pivot information should be broadcast.In an optimized implementation, we need to �nish with the pivot phase, and the triangular solvephase, as soon as possible in order to begin the update phase which is richest in parallelism.Thus, it is not a good idea to broadcast the pivot information from a single source process usinga spanning tree algorithm, since this may occupy some of the processes involved in the panelfactorization for too long. It is important to get the pivot information to the other processes inthis template column as soon as possible, so the pivot information is �rst sent to these processeswhich subsequently broadcast it along the template rows to the other processes not involved inthe panel factorization. In addition, the exchange of the parts of the pivot rows lying withinthe panel is done separately from that of the parts outside the pivot panel. Another factor toconsider here is when the pivot information should be broadcast along the template columns.In Figure 15, the information is broadcast, and rows exchanged, immediately after the pivot isfound. An alternative is to store up the sequence of r pivots for a panel and to broadcast themalong the template rows when panel factorization is complete. This defers the exchange of pivotrows for the parts outside the panel until the panel factorization has been done, as shown inthe pseudocode fragment in Figure 20. An advantage of this second approach is that only onemessage is used to send the pivot information for the panel along the template rows, instead ofr messages.In our implementation of LU factorization on the Intel Delta system, we used a spanning treealgorithm to locate the pivot and to broadcast it within the column of the process templateperforming the panel factorization. This ensures that pivoting, which involves only P processes,is completed as quickly as possible. A ring broadcast is used to pipeline the pivot informationand the factored panel along the template rows. Finally, after the triangular solve phase hascompleted, a spanning tree broadcast is used to send the newly-formed block row of U along thetemplate columns. Results for square matrices from runs on the Intel Delta system are shownin Figure 21. For each curve the results for the best process template con�guration are shown.Recalling that for a scalable algorithm the performance should depend linearly on the numberof processors for �xed granularity (see Eq. 2), it is apparent that scalability may be assessed bythe extent to which isogranularity curves di�er from linearity. An isogranularity curve is a plotof performance against number of processors for a �xed granularity. The results in Figure 21 canbe used to generate the isogranularity curves shown in Figure 22 which show that on the Deltasystem the LU factorization routine starts to lose scalability when the granularity falls belowabout 0:2 � 106. This corresponds to a matrix size of about M = 10000 on 512 processors, orabout 13% of the memory available to applications on the Delta, indicating that LU factorizationscales rather well on the Intel Delta system. 32

www.manaraa.com

8 Conclusions and Future Research DirectionsPortability of programs has always been an important consideration. Portability was easy toachieve when there was a single architectural paradigm (the serial von Neumann machine) anda single programming language for scienti�c programming (Fortran) embodying that commonmodel of computation. Architectural and linguistic diversity have made portability much moredi�cult, but no less important, to attain. Users simply do not wish to invest signi�cant amountsof time to create large-scale application codes for each new machine. Our answer is to developportable software libraries that hide machine-speci�c details.8.1 Portability, Scalability, and StandardsIn order to be truly portable, parallel software libraries must be standardized. In a parallelcomputing environment in which the higher-level routines and/or abstractions are built uponlower-level computation and message-passing routines, the bene�ts of standardization are par-ticularly apparent. Furthermore, the de�nition of computational and message-passing standardsprovides vendors with a clearly de�ned base set of routines that they can implement e�ciently.>From the user's point of view, portability means that, as new machines are developed, they aresimply added to the network, supplying cycles where they are most appropriate.>From the mathematical software developer's point of view, portability may require signi�cante�ort. Economy in development and maintenance of mathematical software demands that suchdevelopment e�ort be leveraged over as many di�erent computer systems as possible. Given thegreat diversity of parallel architectures, this type of portability is attainable to only a limiteddegree, but machine dependences can at least be isolated.LAPACK is an example of a mathematical software package whose highest-level componentsare portable, while machine dependences are hidden in lower-level modules. Such a hierarchicalapproach is probably the closest one can come to software portability across diverse parallelarchitectures. And the BLAS that are used so heavily in LAPACK provide a portable, e�cient,and exible standard for applications programmers.Like portability, scalability demands that a program be reasonably e�ective over a wide rangeof number of processors. The scalability of parallel algorithms, and software libraries based onthem, over a wide range of architectural designs and numbers of processors will likely require thatthe fundamental granularity of computation be adjustable to suit the particular circumstancesin which the software may happen to execute. Our approach to this problem is block algorithmswith adjustable block size. In many cases, however, polyalgorithms2 may be required to dealwith the full range of architectures and processor multiplicity likely to be available in the future.2In a polyalgorithm the actual algorithm used depends on the computing environment and the input data.The optimal algorithm in a particular instance is automatically selected at runtime.33

www.manaraa.com

Scalable parallel architectures of the future are likely to be based on a distributed memoryarchitectural paradigm. In the longer term, progress in hardware development, operating sys-tems, languages, compilers, and communications may make it possible for users to view suchdistributed architectures (without signi�cant loss of e�ciency) as having a shared memory witha global address space. For the near term, however, the distributed nature of the underlyinghardware will continue to be visible at the programming level; therefore, e�cient proceduresfor explicit communication will continue to be necessary. Given this fact, standards for basicmessage passing (send/receive), as well as higher-level communication constructs (global sum-mation, broadcast, etc.), become essential to the development of scalable libraries that have anydegree of portability. In addition to standardizing general communication primitives, it may alsobe advantageous to establish standards for problem-speci�c constructs in commonly occurringareas such as linear algebra.The BLACS (Basic Linear Algebra Communication Subprograms) [16, 26] is a package thatprovides the same ease of use and portability for MIMD message-passing linear algebra com-munication that the BLAS [17, 18, 45] provide for linear algebra computation. Therefore, werecommend that future software for dense linear algebra on MIMD platforms consist of calls tothe BLAS for computation and calls to the BLACS for communication. Since both packageswill have been optimized for a particular platform, good performance should be achieved withrelatively little e�ort. Also, since both packages will be available on a wide variety of machines,code modi�cations required to change platforms should be minimal.8.2 Alternative ApproachesTraditionally, large, general-purpose mathematical software libraries have required users to writetheir own programs that call library routines to solve speci�c subproblems that arise duringa computation. Adapted to a shared-memory parallel environment, this conventional interfacestill o�ers some potential for hiding underlying complexity. For example, the LAPACK projectincorporates parallelism in the Level 3 BLAS, where it is not directly visible to the user.But when going from shared-memory systems to the more readily scalable distributed memorysystems, the complexity of the distributed data structures required is more di�cult to hide fromthe user. Not only must the problem decomposition and data layout be speci�ed, but di�erentphases of the user's problem may require transformations between di�erent distributed datastructures.These de�ciencies in the conventional user interface have prompted extensive discussion of alter-native approaches for scalable parallel software libraries of the future. Possibilities include:1. Traditional function library (i.e., minimum possible change to the status quo in going fromserial to parallel environment). This will allow one to protect the programming investmentthat has been made. 34

www.manaraa.com

2. Reactive servers on the network. A user would be able to send a computational problem toa server that was specialized in dealing with the problem. This �ts well with the conceptsof a networked, heterogeneous computing environment with various specialized hardwareresources (or even the heterogeneous partitioning of a single homogeneous parallel machine).3. General interactive environments like Matlab or Mathematica, perhaps with \expert"drivers (i.e., knowledge-based systems). With the growing popularity of the many inte-grated packages based on this idea, this approach would provide an interactive, graphicalinterface for specifying and solving scienti�c problems. Both the algorithms and datastructures are hidden from the user, because the package itself is responsible for storingand retrieving the problem data in an e�cient, distributed manner. In a heterogeneousnetworked environment, such interfaces could provide seamless access to computationalengines that would be invoked selectively for di�erent parts of the user's computationaccording to which machine is most appropriate for a particular subproblem.4. Domain-speci�c problem solving environments, such as those for structural analysis. En-vironments like Matlab and Mathematica have proven to be especially attractive for rapidprototyping of new algorithms and systems that may subsequently be implemented in amore customized manner for higher performance.5. Reusable templates (i.e., users adapt \source code" to their particular applications). Atemplate is a description of a general algorithm rather than the executable object code orthe source code more commonly found in a conventional software library. Nevertheless,although templates are general descriptions of key data structures, they o�er whateverdegree of customization the user may desire.Novel user interfaces that hide the complexity of scalable parallelism will require new conceptsand mechanisms for representing scienti�c computational problems and for specifying how thoseproblems relate to each other. Very high level languages and systems, perhaps graphically based,not only would facilitate the use of mathematical software from the user's point of view, butalso would help to automate the determination of e�ective partitioning, mapping, granularity,data structures, etc. However, new concepts in problem speci�cation and representation mayalso require new mathematical research on the analytic, algebraic, and topological properties ofproblems (e.g., existence and uniqueness).We have already begun work on developing such templates for sparse matrix computations.Future work will focus on extending the use of templates to dense matrix computations.We hope the insight we gained from our work will inuence future developers of hardware,compilers and systems software so that they provide tools to facilitate development of highquality portable numerical software. 35

www.manaraa.com

The EISPACK, LINPACK, and LAPACK linear algebra libraries are in the public domain, andare available from netlib. For example, for more information on how to obtain LAPACK, sendthe following one-line email message to netlib@ornl.gov:send index from lapackInformation for EISPACK and LINPACK can be similarly obtained. We expect to make apreliminary version of the ScaLAPACK library available from netlib in 1993.AcknowledgmentsThis research was performed in part using the Intel Touchstone Delta System operated by theCalifornia Institute of Technology on behalf of the Concurrent Supercomputing Consortium.Access to this facility was provided through the Center for Research on Parallel Computing.References[1] E. Anderson, A. Benzoni, J. J. Dongarra, S. Moulton, S. Ostrouchov, B. Tourancheau,and R. van de Geijn. LAPACK for distributed memory architectures: Progress report. InParallel Processing for Scienti�c Computing, Fifth SIAM Conference. SIAM, 1991.[2] E. Anderson and J. Dongarra. Results from the initial release of LAPACK. TechnicalReport LAPACK working note 16, Computer Science Department, University of Tennessee,Knoxville, TN, 1989.[3] E. Anderson and J. Dongarra. Evaluating block algorithm variants in LAPACK. TechnicalReport LAPACK working note 19, Computer Science Department, University of Tennessee,Knoxville, TN, 1990.[4] C. C. Ashcraft. The distributed solution of linear systems using the torus wrap data map-ping. Engineering Computing and Analysis Technical Report ECA-TR-147, Boeing Com-puter Services, 1990.[5] C. C. Ashcraft. A taxonamy of distributed dense LU factorization methods. EngineeringComputing and Analysis Technical Report ECA-TR-161, Boeing Computer Services, 1991.[6] M. Barnett, D. G. Payne, and R. van de Geijn. Broadcasting on meshes with worm-holerouting. Technical report, Department of Computer Science, University of Texas at Austin,April 1993. Submitted to Supercomputing '93.[7] W. S. Brainerd, C. H. Goldbergs, and J. C. Adams. Programmers Guide to Fortran 90.McGraw-Hill, New York, 1990. 36

www.manaraa.com

[8] R. P. Brent. The LINPACK benchmark for the Fujitsu AP 1000. In Proceedings of theFourth Symposium on the Frontiers of Massively Parallel Computation, pages 128{135. IEEEComputer Society Press, 1992.[9] R. P. Brent. The LINPACK benchmark on the AP 1000: Preliminary report. In Proceedingsof the 2nd CAP Workshop, NOV 1991.[10] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. Scalapack: A scalable linear algebralibrary for distributed memory concurrent computers. In Proceedings of the Fourth Sympo-sium on the Frontiers of Massively Parallel Computation, pages 120{127. IEEE ComputerSociety Press, 1992.[11] J. Choi, J. J. Dongarra, and D. W. Walker. The design of scalable software libraries fordistributed memory concurrent computers. In J. J. Dongarra and B. Tourancheau, editors,Environments and Tools for Parallel Scienti�c Computing. Elsevier Science Publishers, 1993.[12] E. Chu and A. George. Gaussian elimination with partial pivoting and load balancing on amultiprocessor. Parallel Computing, 5:65{74, 1987.[13] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken,and K. Yelick. Introduction to Split-C: Version 0.9. Technical report, Computer ScienceDivision { EECS, University of California, Berkeley, CA 94720, February 1993.[14] J. Demmel. LAPACK: A portable linear algebra library for supercomputers. In Proceedingsof the 1989 IEEE Control Systems Society Workshop on Computer-Aided Control SystemDesign, December 1989.[15] J. J. Dongarra. Increasing the performance of mathematical software through high-levelmodularity. In Proc. Sixth Int. Symp. Comp. Methods in Eng. & Applied Sciences, Versailles,France, pages 239{248. North-Holland, 1984.[16] J. J. Dongarra. LAPACK Working Note 34: Workshop on the BLACS. Computer Sci-ence Dept. Technical Report CS-91-134, University of Tennessee, Knoxville, TN, May 1991.(LAPACK Working Note #34).[17] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Du�. A set of level 3 basic linear algebrasubprograms. ACM Transactions on Mathematical Software, 16(1):1{17, 1990.[18] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An extended set of Fortranbasic linear algebra subroutines. ACM Transactions on Mathematical Software, 14(1):1{17,March 1988.[19] J. J. Dongarra, I. S. Du�, D. C. Sorensen, and H. A. Van der Vorst. Solving Linear Systemson Vector and Shared Memory Computers. SIAM Publications, Philadelphia, PA, 1991.37

www.manaraa.com

[20] J. J. Dongarra and E. Grosse. Distribution of mathematical software via electronic mail.Communications of the ACM, 30(5):403{407, July 1987.[21] J. J. Dongarra, R. Hempel, A. J. G. Hey, and D. W. Walker. A proposal for a user-levelmessage passing interface in a distributed memory environment. Technical Report TM-12231, Oak Ridge National Laboratory, February 1993.[22] J. J. Dongarra, Peter Mayes, and Giuseppe Radicati di Brozolo. The IBMRISC System/6000and linear algebra operations. Supercomputer, 44(VIII-4):15{30, 1991.[23] J. J. Dongarra and S. Ostrouchov. LAPACK block factorization algorithms on the InteliPSC/860. Technical Report CS-90-115, University of Tennessee at Knoxville, ComputerScience Department, October 1990.[24] J. J. Dongarra, R. Pozo, and D. W. Walker. An object oriented design for high performancelinear algebra on distributed memory architectures. In Proceedings of the Object OrientedNumerics Conference, 1993.[25] J. J. Dongarra, R. van de Geijn, and D. W. Walker. A look at scalable dense linear al-gebra libraries. In IEEE, editor, Proceedings of the Scalable High-Performance ComputingConference, pages 372{379. IEEE Publishers, 1992.[26] J. J. Dongarra and R. A. van de Geijn. Two-dimensional basic linear algebra communicationsubprograms. Technical Report LAPACK working note 37, Computer Science Department,University of Tennessee, Knoxville, TN, October 1991.[27] J. J. Dongarra and R. A. van de Geijn. Reduction to condensed form for the eigenvalueproblem on distributed memory architectures. Parallel Computing, 18:973{982, 1992.[28] J. Du Croz and M. Pont. The development of a oating-point validation package. In M. J.Irwin and R. Stefanelli, editors, Proceedings of the 8th Symposium on Computer Arithmetic,Como, Italy, May 19-21, 1987. IEEE Computer Society Press, 1987.[29] T. H. Dunigan. Communication performance of the Intel Touchstone Delta mesh. TechnicalReport TM-11983, Oak Ridge National Laboratory, January 1992.[30] A. Edelman. Large dense numerical linear algebra in 1993: The parallel computing inuence.International Journal Supercomputer Applications, 1993. Accepted for publication.[31] E. W. Felten and S. W. Otto. Coherent parallel C. In G. C. Fox, editor, Proceedings of theThird Conference on Hypercube Concurrent Computers and Applications, pages 440{450.ACM Press, 1988. 38

www.manaraa.com

[32] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W. Walker.Solving Problems on Concurrent Processors, volume 1. Prentice Hall, Englewood Cli�s,N.J., 1988.[33] K. Gallivan, R. Plemmons, and A. Sameh. Parallel algorithms for dense linear algebracomputations. SIAM Review, 32(1):54{135, 1990.[34] A. Geist and M. Heath. Matrix factorization on a hypercube multiprocessor. In M. Heath,editor, Hypercube Multiprocessors, 1986, pages 161{180, Philadelphia, PA, 1986. Society forIndustrial and Applied Mathematics.[35] A. Geist and C. Romine. LU factorization algorithms on distributed-memorymultiprocessorarchitectures. SIAM J. Sci. Statist. Comput., 9(4):639{649, July 1988.[36] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins Press, Balti-more, Maryland, 2nd edition, 1989.[37] A. Gupta and V. Kumar. On the scalability of FFT on parallel computers. In Proceedingsof the Frontiers 90 Conference on Massively Parallel Computation. IEEE Computer Soci-ety Press, 1990. Also available as technical report TR 90-20 from the Computer ScienceDepartment, University of Minnesota, Minneapolis, MN 55455.[38] R. Harrington. Origin and development of the method of moments for �eld computation.IEEE Antennas and Propagation Magazine, June 1990.[39] B. Hendrickson and D. Womble. The torus-wrap mapping for dense matrix computationson massively parallel computers. Technical Report SAND92-0792, Sandia National Labora-tories, April 1992.[40] J. L. Hess. Panel methods in computational uid dynamics. Annual Reviews of FluidMechanics, 22:255{274, 1990.[41] J. L. Hess and M. O. Smith. Calculation of potential ows about arbitrary bodies. InD. K�uchemann, editor, Progress in Aeronautical Sciences, Volume 8. Pergamon Press, 1967.[42] High Performance Fortran Forum. High Performance Fortran Language Speci�cation, Ver-sion 1.0, January 1993.[43] R. W. Hockney and C. R. Jesshope. Parallel Computers. Adam Hilger Ltd., Bristol, UK,1981.[44] W. Kahan. Paranoia. Available from netlib [20].[45] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subprograms forFortran usage. ACM Trans. Math. Softw., 5:308{323, 1979.39

www.manaraa.com

[46] C. Leiserson. Fat trees: Universal networks for hardware-e�cient supercomputing. IEEETransactions on Computers, C-34(10):892{901, 1985.[47] W. Lichtenstein and S. L. Johnsson. Block-cyclic dense linear algebra. Technical ReportTR-04-92, Harvard University, Center for Research in Computing Technology, January 1992.[48] M. Lin, D. Du, A. E. Klietz, and S. Saro�. Performance evaluation of the CM-5 interconnec-tion network. Technical report, Department of Computer Science, University of Minnesota,1992.[49] R. Ponnusamy, A. Choudhary, and G. Fox. Communication overhead on CM-5: An exper-imental performance evaluation. In Proceedings of the Fourth Symposium on the Frontiersof Massively Parallel Computation, pages 108{115. IEEE Computer Society Press, 1992.[50] Y. Saad and M. H. Schultz. Parallel direct methods for solving banded linear systems.Technical Report YALEU/DCS/RR-387, Department of Computer Science, Yale University,1985.[51] S. R. Seidel. Broadcasting on linear arrays and meshes. Technical Report TM-12356, OakRidge National Laboratory, April 1993.[52] A. Skjellum and A. Leung. LU factorization of sparse, unsymmetric, Jacobian matriceson multicomputers. In D. W. Walker and Q. F. Stout, editors, Proceedings of the FifthDistributed Memory Concurrent Computing Conference, pages 328{337. IEEE Press, 1990.[53] Thinking Machines Corporation, Cambridge, MA. CM-5 Technical Summary, 1991.[54] R. A. van de Geijn. Massively parallel LINPACK benchmark on the Intel Touchstone Deltaand iPSC/860 systems. Computer Science report TR-91-28, Univ. of Texas, 1991.[55] E. F. Van de Velde. Data redistribution and concurrency. Parallel Computing, 16, December1990.[56] J. J. H. Wang. Generalized Moment Methods in Electromagnetics. John Wiley & Sons, NewYork, 1991.[57] J. Wilkinson and C. Reinsch. Handbook for Automatic Computation: Volume II - LinearAlgebra. Springer-Verlag, New York, 1971.
40

www.manaraa.com

pcol= q0prow= p0do k= 0;min (Mb; Nb)� 1do i= 0; r � 1if (q =pcol) �nd pivot value and locationbroadcast pivot value and location to all processesexchange pivot rowsif (q =pcol) divide column r below diagonal by pivotend doif (p =prow) thenbroadcast L0 to all process in same template rowsolve L0U1 = Cend ifbroadcast L1 to all processes in same template rowbroadcast U1 to all processes in same template columnupdate E E � L1U1pcol= (pcol + 1) mod Qprow= (prow + 1) mod Pend doFigure 15: Pseudocode for the basic parallel block-partitioned LU factorization algorithm. Thiscode is executed by each process. The �rst box inside the k loop factors the kth column of blocks.The second box solves a lower triangular system to evaluate the kth row of blocks of U , and thethird box updates the trailing submatrix. The template o�set is given by (p0; q0), and (p; q) isposition of a process in the template. 41

www.manaraa.com

(a) Broadcast along rows.
(b) Broadcast along columns.

A

B

C

D

A A A A A A

B B B B B B

C C C C C C

D D D D D D

R S T U V W

R

R

R

R

S

S

S

S

T

T

T

T

U

U

U

U

V

V

V

V

W

W

W

WFigure 16: Schematic representation of broadcast along rows and columns of a 4 � 6 processtemplate. In (a), each shaded process broadcasts to the processes in the same row of the processtemplate. In (b), each shaded process broadcasts to the processes in the same column of theprocess template.
42

www.manaraa.com

0 100 200 300 400 500
0

5

10

15

20

25

30

35

40

Α (Μ × Μ) ⋅ Β (Μ × Μ)

Α (Μ × Μ/2) ⋅ Β (Μ/2 × Μ)

Α (Μ/2 × Μ) ⋅ Β (Μ × Μ/2)

Matrix Size, M

M
fl

op
s

Figure 17: Performance of the assembly-coded Level 3 BLAS matrix multiplication routineDGEMM on one i860 processor of the Intel Delta system. Results for square and rectangularmatrices are shown. Note that the peak performance of about 35 Mops is attained only formatrices whose smallest dimension exceeds 100. Thus, performance is improved if a few largematrices are multiplied by each process, rather than many small ones.
43

www.manaraa.com

do b = 0; bmax� 1do d = 0; dmax � 1do i = 0; r � 1do j = 0; r � 1do k = 0; r � 1E(b; d; i; j) = E(b; d; i; j)� L1(b; d; i; k)U1(b; d; k; j)end all do loops (a) Block-block multiplicationdo k = 0; r � 1do b = 0; bmax � 1do j = 0; r � 1do d = 0; dmax � 1do i = 0; r � 1E(b; d; i; j) = E(b; d; i; j)� L1(b; d; i; k)U1(b; d; k; j)end all do loops(b) Intermediate form of algorithmdo k = 0; r � 1do x = 0; rbmax � 1do y = 0; rdmax � 1E(x; y) = E(x; y)� L1(x; k)U1(k; y)end all do loops(c) Outer product form of algorithmFigure 18: Pseudocode for di�erent versions of the rank-r update, E E�L1U1, for one process.The number of row and column blocks per process is given by bmax and dmax, respectively; r isthe block size. Blocks are indexed by (b; d), and elements within a block by (i; j). In version (a)the r � r blocks are multiplied one at a time, giving an inner loop of length r. (b) shows theloops rearranged before merging the i and d loops, and the j and b loops. This leads to the outerproduct form of the algorithm shown in (c) in which the inner loop is now of length rdmax.44

www.manaraa.com

0 3000 6000 9000 12000 15000 18000
0

1

2

3

4

5

6

Matrix Size, M

G
fl

op
/s

4 × 64
8 × 32

12 × 21
16 × 16

Figure 19: Performance of LU factorization on the Intel Delta as a function of square matrix sizefor di�erent processor templates containing approximately 256 processors. The best performanceis for an aspect ratio of 1/4, though the dependence on aspect ratio is rather weak.if (q =pcol) thendo i= 0; r � 1�nd pivot value and locationexchange pivot rows lying within paneldivide column r below diagonal by pivotend doend ifbroadcast pivot information for r pivots along template rowsexchange pivot rows lying outside the panel for each of r pivotsFigure 20: Pseudocode fragment for partial pivoting over rows. This may be regarded as re-placing the �rst box inside the k loop in Figure 15. In the above code pivot information is �rstdisseminated within the template column doing the panel factorization. The pivoting of the partsof the rows lying outside the panel is deferred until the panel factorization has been completed.45

www.manaraa.com

0 4000 8000 12000 16000 20000 24000 28000
0

2

4

6

8

10

12

2 × 16
4 × 16

4 × 32

8 × 32

8 × 64

Matrix Size, M

G
fl

op
s

Figure 21: Performance of LU factorization on the Intel Delta as a function of square matrix sizefor di�erent numbers of processors. For each curve, results are shown for the process templatecon�guration that gave the best performance for that number of processors.
0 100 200 300 400 500 600

0

2

4

6

8

10

12
1.221

 0.195

 0.096

 0.500

Number of Processors

G
fl

op
s

Figure 22: Isogranularity curves in the (Np; G) plane for the LU factorization of square matriceson the Intel Delta system. The curves are labeled by the granularity in units of 106 matrixelements per processor. The linearity of the plots for granularities exceeding about 0:2 � 106indicates that the LU factorization algorithm scales well on the Delta.46

